Calculate the Greatest Common Factor or GCF of 18, 24, 46 and 66
Sponsors
The instructions to find the GCF of 18, 24, 46 and 66 are the next:
1. Decompose all numbers into prime factors
18 | 2 |
9 | 3 |
3 | 3 |
1 |
24 | 2 |
12 | 2 |
6 | 2 |
3 | 3 |
1 |
46 | 2 |
23 | 23 |
1 |
66 | 2 |
33 | 3 |
11 | 11 |
1 |
2. Write all numbers as the product of its prime factors
Prime factors of 18 | = | 2 . 32 |
Prime factors of 24 | = | 23 . 3 |
Prime factors of 46 | = | 2 . 23 |
Prime factors of 66 | = | 2 . 3 . 11 |
3. Choose the common prime factors with the lowest exponent
Common prime factors: 2
Common prime factors with the lowest exponent: 21
4. Calculate the Greatest Common Factor or GCF
Remember, to find the GCF of several numbers you must multiply the common prime factors with the lowest exponent.
GCF = 21 = 2
Also calculates the: